Abstract

With the aim of improving the utility of the DFT-D3 empirical dispersion correction, we herein generalize the DFT-D3 damping function by optimizing an additional parameter, an exponent, which controls the rate at which the dispersion tail is activated. This method - DFT-D3(op), shorthand for "optimized power," where power refers to the newly introduced exponent - is then parametrized for use with ten popular density functional approximations across a small set of noncovalent interactions and isomerization energies; the resulting methods are then evaluated across a large independent test set of 2475 noncovalent binding energies and isomerization energies. We find that the DFT-D3(op) tail represents a substantial improvement over existing damping functions, as it affords significant reductions in errors associated with noncovalent interaction energies and geometries. The revPBE0-D3(op) and MS2-D3(op) methods in particular stand out, and our extensive testing indicates they are competitive with other modern density functionals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call