Abstract

Changes in land use/land cover (LULC) directly or indirectly affect water quality in watercourses and impoundments. Sustainable management strategies aimed to enhance ecosystem health and community well-being require an accurate water-quality evaluation. This study looks into the correlation between temporal changes in LULC, represented by selected landscape variables (land cover area and proportion, patch density, Euclidean nearest-neighbor distance, mean shape index, and Shannon index), and water quality variables (nitrate, total phosphorus, and total suspended solids) at catchment scale. To compare the watershed-size influence, this analysis was performed at two different spatial scales represented by two Uruguayan basins of different sizes, San Salvador (3,118 km2) and Del Tala (160 km2). Partial Least Squares and Random Forest unsupervised machine-learning models were employed for this analysis. By exploiting a non-model-biased method based on game theory (SHAP), the LULC characteristics were quantified and ranked based on their level of importance in the water-quality evaluation. The main outcomes of this study proved that patch density is one of the most influencing metrics in both watersheds and for both models. Agricultural land use is the most critical one at both catchments and agricultural with a forage crop land uses are the most important ones for both algorithms. Furthermore, it is possible to state that the adopted techniques are valuable tools that can provide an adequate overview of the water‐quality behavior in space and time and the correlations between water-quality variables and LULC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call