Abstract

In this work, we explore the suitability of several density functionals with the generalized gradient approximation (GGA) and beyond for describing the dissociative chemisorption of methane on the reconstructed Pt(110)-(2×1) surface. The bulk and surface structures of the metal, methane adsorption energy, and dissociation barrier are used to assess the functionals. A van der Waals corrected GGA functional (optPBE-vdW) and a meta-GGA functional with van der Waals correction (MS PBEl-rVV10) are selected for ab initio molecular dynamics calculations of the sticking probability. Our results suggest that the use of these two functionals may lead to a better agreement with existing experimental results, thus serving as a good starting point for future development of reliable machine-learned potential energy surfaces for the dissociation of methane on the Pt(110)-(2×1) surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.