Abstract

Abstract Dams are a major contributor to the historic decline and current low abundance of diadromous fish. We developed a population viability analysis to assess demographic effects of dams on diadromous fish within a river system and demonstrated an application of the model with Atlantic salmon in the Penobscot River, Maine. We used abundance and distribution of wild- and hatchery-origin adult salmon throughout the watershed as performance metrics. Salmon abundance, distribution to upper reaches of the Penobscot watershed, and the number and proportion of wild-origin fish in the upper reaches of the Penobscot watershed increased when dams, particularly mainstem dams, were removed or passage efficiency was increased. Salmon abundance decreased as indirect latent mortality per dam was increased. Salmon abundance increased as marine or freshwater survival rates were increased, but the increase in abundance was larger when marine survival was increased than when freshwater survival was increased. Without hatchery supplementation, salmon abundance equalled zero with low marine and freshwater survival but increased when marine and freshwater survival rates were increased. Models, such as this one, that incorporate biological, environmental, and functional parameters can be used to predict ecological responses of fish populations and can help evaluate and prioritize management and restoration actions for diadromous fish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call