Abstract

To predict the impact of environmental change on species distributions, it has been hypothesized that community-level models could give some benefits compared to species-level models. In this study we have assessed the performance of these two approaches. We surveyed 256 bird communities in an agricultural landscape in southwest France at the same locations in 1982 and 2007. We compared the ability of CQO (canonical quadratic ordination; a method of community-level GLM) and GLMs (generalized linear models) to i) explain species distributions in 1982 and ii) predict species distributions, community composition and species richness in 2007, after land cover change. Our results show that models accounting for shared patterns between species (CQO) slightly better explain the distribution of rare species than models that ignore them (GLMs). Conversely, the predictive performances were better for GLMs than for CQO. At the assemblage level, both CQO and GLMs overestimated species richness, compared with that actually observed in 2007, and projected community composition was only moderately similar to that observed in 2007. Species richness projections tended to be more accurate in sites where land cover change was more marked. In contrast, the composition projections tended to be less accurate in those sites. Both modelling approaches showed a similar but limited ability to predict species distribution and assemblage composition under conditions of land cover change. Our study supports the idea that our community-level model can improve understanding of rare species patterns but that species-level models can provide slightly more accurate predictions of species distributions. At the community level, the similar performance of both approaches for predicting patterns of assemblage variation suggests that species tend to respond individualistically or, alternatively, that our community model was unable to effectively account for the emergent community patterns.

Highlights

  • The distributions of many species and communities are showing rapid changes in the face of habitat and climate change [1,2,3,4]

  • Brier values were significantly lower for GLMs than for CQO, indicating that the reliability of species distribution predictions was better for GLMs based on this criterion

  • We assessed the ability of community-level (CQO) and single-species models (GLMs) to predict species distributions, richness and composition under land cover change, using, for the first time truly independent validation data: models were fitted with data obtained in 1982 and validated with data obtained in 2007

Read more

Summary

Introduction

The distributions of many species and communities are showing rapid changes in the face of habitat and climate change [1,2,3,4]. Unlike species-level modelling, for which species with too little data are usually excluded from further analysis (for statistical reasons), many community-level modelling strategies make use of all available data across all species, regardless of the number of records per species [9] This approach takes into account the patterns of co-occurrence of species in the statistical analysis, assuming that interspecific associations are indirectly accounted for by patterns of co-occurrence (or coexclusion). Chapman & Purse [12] found that community level models were slightly less accurate than single-species models, but that they offered a highly simplified way of modelling spatial patterns in British plant community None of these earlier studies compared the performance of single-species and community models using independent validation data collected at a different time. It is often difficult to obtain information on past land use and, in practice, very few studies have explicitly assessed the predictive performance of distribution models in a context of land use change (but see [24,25])

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.