Abstract
Structural changes in the collagen II architecture of osteoarthritis (OA) are poorly understood, which is a large shortcoming in the early diagnosis of this disease. Though degradation can be simulated by enzymes including trypsin and bacterial collagenase, the specific structural features of each digestion and their relationship to naturally occurring OA remain unclear. We used collagen sensitive/specific Second Harmonic Generation (SHG) microscopy in conjunction with optical scattering measurements to probe the resulting architecture changes in bovine knee cartilage upon trypsin and collagenase degradation. Image features extracted from SHG images were used to train a linear discriminant (LD) model capable of classifying enzymatic degradation, which was then applied to human cartilage with varied modified Mankin histological scores. The treatment of cartilage with these enzymes resulted in more disorganized collagen structure, where this effect was greatest with collagenase treatment. Using the LD model, we classified the control and degraded tissues in the three zones with >92% accuracy, showing that these enzymes have distinct activity on the collagen assembly. Application of the LD model to human cartilage indicated that collagenase effects were more representative of in vivo degeneration and were also consistent with damage beginning at the articular surface and progressing into deeper zones. SHG and optical scattering measurements successfully delineate trypsin and collagenase degradation and suggest that collagen alterations in human OA are better simulated by the latter mechanism. These results lay the groundwork for using high-resolution SHG and optical scattering as an earlier diagnostic tool than is currently available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.