Abstract

Plasma-sprayed thermal barrier coatings (TBCs) exhibit many interlamellar pores, voids, and microcracks. These microstructural features are primarily responsible for the low global stiffness and the low thermal conductivity commonly exhibited by such coatings. The pore architecture thus has an important influence on such thermophysical properties. In the present work, the effect of heat treatment (at temperatures up to 1400 °C, for times of up to 20 h) on the pore architecture of detached YSZ top coats with different impurity levels have been characterized by mercury intrusion porosimetry and gas-sorption techniques. Stiffness and thermal conductivity were also monitored to assess the effect of change in pore architecture on properties. While the overall porosity level remained relatively unaffected (at around 10-12%) after the heat treatments concerned, there were substantial changes in the pore size distribution and the (surface-connected) specific surface area. Fine pores (<~50 nm) rapidly disappeared, while the specific surface area dropped dramatically, particularly at high-treatment temperatures (~1400 °C). These changes are thought to be associated with intrasplat microcrack healing, improved intersplat bonding and increased contact area, leading to disappearance of much of the fine porosity. These microstructural changes are reflected in sharply increased stiffness and thermal conductivity. Increase in thermal conductivity and stiffness were found to be more pronounced for coatings with higher impurity content (particularly alumina and silica). Reliability issues surrounding such increase in thermal conductivity and stiffness are discussed along with a brief note on the effect of impurities on TBC life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.