Abstract
AbstractIt has been suggested that global warming impacts on human thermal comfort will cause an increase in the heat stress and a decrease in the cold stress in the future. A recent study has shown elevated increases in human‐perceived equivalent temperature (HPET) by using a single index for summer and winter seasons (Li et al., 2018, https://doi.org/10.1038/s41558‐017‐0036‐2). However, they have not considered multiple indices with combined effects on deriving HPET, which can result in large uncertainties in assessing climate change impacts on HPET and related extremes. Therefore, we develop a new framework with high‐resolution projections and an ensemble of 10 indices to quantify the impacts of climate change on HPET and related perceived extremes as well as to address uncertainties in both empirical indices and emission scenarios over China. Our findings reveal that different combinations of climatic variables can lead to two opposite conclusions for both normal and extreme conditions. For example, by using indices only considering the combined effect of temperature and relative humidity, China is projected to have an elevated increase in the HPET and in the frequency of high‐temperature extremes. By taking into account wind speed, the country expects to have the HPET even lower than the surface air temperature and an increase in the frequency of low‐temperature extremes. In addition, the resulting range of HPET due to uncertainty in indices is greater than the uncertainty range derived from different emission scenarios for the entire country. Therefore, it is necessary to conduct a comprehensive assessment that explicitly addresses uncertainties in the HPET in order to improve the robustness and reliability of assessing climate change impacts on human‐perceived temperature extremes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.