Abstract

ABSTRACTUrban vegetation can help to offset carbon emissions. However, urban vegetation cover is vulnerable to urbanization. This study attempts to detect the change in vegetation cover and to quantify its impact on aboveground carbon (AGC) stocks in Auckland, New Zealand, between 1989 and 2014. Field-measured vegetation parameters were used to calculate the amount of carbon stored in plants at the plot-level. Plot-level AGC stocks were linked with vegetation spectral/structural features derived from Landsat images and Light Detection and Ranging (LiDAR) data. These data were also used to map vegetation cover and to estimate AGC stock. Vegetation cover decreased from 394.0 km2 in 1989 to 379.4 km2 in 2014. AGC stock in 1989 was estimated at 1,001,184 Mg C from Landsat 4 data. The total AGC in 2014 was estimated at 1,459,530 Mg C from Landsat 8 data. Thus, total AGC stock increased by 458,346 Mg C (45.8%) in spite of a 3.7% decrease in vegetation cover (14.6 km2) during the same period. The increase in AGC stock was derived partly from tree growth and tree plantings. Vegetation growth contributed more to the increase in AGC stock than its gain from non-vegetation to vegetation changes. The AGC stored in trees and shrubs estimated at 1,333,011 Mg C from the 2014 Landsat data is 5.7% lower than 1,414,607 Mg C estimated from the 2013 LiDAR data, due to the inability of optical imagery to capture the sub-canopy structure of forests and the saturation effect. Thus, LiDAR data provided a more accurate estimate of AGC stock, especially when the stock density is high (e.g. >97.9 Mg C ha–1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call