Abstract
AbstractExplosive bonding is a dynamic joining method used to rapidly create metallurgical bonds between two metals. These interfaces can exhibit strengths greater than the parent materials and contain little porosity. Bond quality, however, is highly dependent on processing parameters. Explosive bonds fueled by ammonium nitrate have been extensively characterized, but processing windows for plastic explosives have not. Here, bond strength in 304L stainless steel plate explosively bonded using rubberized/plastic explosives are assessed using shear by tension loading of single-lap-joint specimens. The effects of collision velocity and collision angle on bond quality and strength are investigated and used to define a processing window. Failure modes varied across both the process space studied and within individual bonds. Microstructural analysis across fractured interfaces is combined with fractography to describe the different failure modes and variable strength across bond interfaces.KeywordsWeldingBond strengthFractography3D characterizationTension
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.