Abstract

ObjectivesTo compare mechanical properties of 3D-printed and milled poly-ether-ether-ketone (PEEK) materials. To define post-production treatments to enhance biocompatibility of 3D-printed PEEK. MethodsStandardised PEEK samples were produced via milling and fused-deposition-modelling 3D-printing. To evaluate mechanical properties, tensile strength, maximum flexural strength, fracture toughness, and micro-hardness were measured.3D printed samples were sandblasted with 50 or 125 μm aluminium oxide beads to increase biocompatibility.Scanning electron microscopy (SEM) evaluated microstructure of 3D-printed and sandblasted samples, estimating surface roughness at scales from 1mm-1μm.Cell adhesion on 3D printed and sandblasted materials was evaluated by culturing primary human endothelial cells and osteoblasts (HUVEC, HOBS) and evaluating cell growth over 48 h. Results3D printed materials had lower tensile strength, flexural strength, and fracture toughness, but higher micro-hardness.SEM analysis of 3D-printed surfaces showed sandblasting with 125 and 50 μm silica particles removed printing defects and created roughened surfaces for increased HUVEC and HOBs uniform cell adhesion and distribution. No cytotoxicity was observed over a 48h period, and all cells demonstrated >95% viability. Clinical significance3D-printing of PEEK is an emerging technology with clear advantages over milling in maxillofacial implant production. Nonetheless, this manufacturing modality may produce 3D printed PEEK devices with lower mechanical resistance parameters compared to milled PEEK but with values compatible with natural bone. PEEK has poor osteoconductivity and ability to osseointegrate. Sandblasting is an inexpensive modality to remove irregular surface defects and create uniform micro-rough surfaces supporting cell attachment and potentially enhancing integration of PEEK implants with host tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.