Abstract
Neglecting indoor air quality in exposure assessments may lead to biased exposure estimates and erroneous conclusions about the health impacts of exposure and environmental health disparities. This study assessed these biases by comparing two types of personal exposure estimates for 100 individuals: one derived from real-time particulate matter (PM2.5) measurements collected both indoors and outdoors using a low-cost portable air monitor (GeoAir2.0) and the other from PurpleAir sensor network data collected exclusively outdoors. The PurpleAir measurement data were used to create smooth air pollution surfaces using geostatistical methods. To obtain mobility-based exposure estimates, both sets of air pollution data were combined with the individuals' GPS tracking data. Paired-sample t-tests were then performed to examine the differences between these two estimates. This study also investigated whether GeoAir2.0- and PurpleAir-based estimates yielded consistent conclusions about gender and economic disparities in exposure by performing Welch's t-tests and ANOVAs and comparing their t-values and F-values. The study revealed significant discrepancies between GeoAir2.0- and PurpleAir-based estimates, with PurpleAir data consistently overestimating exposure (t = 5.94; p < 0.001). It also found that females displayed a higher average exposure than males (15.65 versus. 8.55 μg/m3) according to GeoAir2.0 data (t = 4.654; p = 0.055), potentially due to greater time spent indoors engaging in pollution-generating activities traditionally associated with females, such as cooking. This contrasted with the PurpleAir data, which indicated higher exposure for males (43.78 versus. 46.26 μg/m3) (t = 3.793; p = 0.821). Additionally, GeoAir2.0 data revealed significant economic disparities (F = 7.512; p < 0.002), with lower-income groups experiencing higher exposure—a disparity not captured by PurpleAir data (F = 0.756; p < 0.474). These findings highlight the importance of considering both indoor and outdoor air quality to reduce bias in exposure estimates and more accurately represent environmental disparities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.