Abstract

Mineral magnetic properties are sensitive indicators for evaluating environmental changes, including environmental pressure caused by atmospherically deposited anthropogenic magnetic particles. The most commonly and easily measured magnetic parameter of soils is magnetic susceptibility, which reflects the combined ferromagnetic minerals of lithogenic, pedogenic, and anthropogenic origins. In volcanic soils rich in ferrimagnetic minerals, unfortunately, contributions of pedogenic and anthropogenic origins are masked by the lithogenic contribution. More study is therefore needed of soils developed on highly magnetic lithologies. This work aimed to determine links between magnetic susceptibility and concentration of potentially toxic elements derived from anthropogenic activities in soil (Aluandic Andosols) developed from highly magnetic parent material in a locality where contamination is not expected. The approach is based on relationships between magnetic properties and geochemical signatures of the investigated soils. Magnetic properties are represented by mass-specific magnetic susceptibility (χ) and frequency-dependent magnetic susceptibility (χFD%). Geochemical signatures are represented by concentrations of the elements Fe, Si, Ti, Zr, Sr, Al, Nb, Mn, Ca, Rb, K, P, Zn, S, Pb, Cr, V, Ni, Cu, and As; pH in H2O; soil organic carbon content; and granulometry. Soil contamination was evaluated using two indexes: enrichment factor and geo-accumulation index. Our findings show that χFD% correlates with presence of the toxic elements S and Pb, derived from human activities, while χ exhibits strong correlation with elements Al, Ti, V, and Fe, reflecting natural origin of parent material. In case of soils with well-developed humus horizon, χFD% can be used as a proxy parameter for identifying anthropogenic influence. Our findings are beneficial also for archaeologists using magnetic susceptibility of soils as a link to chemical signatures of past settlement activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.