Abstract

BackgroundOne of the challenges with modeling the temporal progression of biological signals is dealing with the effect of noise and the limited number of replicates at each time point. Given the rising interest in utilizing predictive mathematical models to describe the biological response of an organism or analysis such as clustering and gene ontology enrichment, it is important to determine whether the dynamic progression of the data has been accurately captured despite the limited number of replicates, such that one can have confidence that the results of the analysis are capturing important salient dynamic features.ResultsBy pre-selecting genes based upon quality before the identification of differential expression via algorithm such as EDGE, it was found that the percentage of statistically enriched ontologies (p < .05) was improved. Furthermore, it was found that a majority of the genes found via the proposed technique were also selected via an EDGE selection though the reverse was not necessarily true. It was also found that improvements offered by the proposed algorithm are anti-correlated with improvements in the various microarray platforms and the number of replicates. This is illustrated by the fact that newer arrays and experiments with more replicates show less improvement when the filtering for quality is first run before the selection of differentially expressed genes. This suggests that the increase in the number of replicates as well as improvements in array technologies are increase the confidence one has in the dynamics obtained from the experiment.ConclusionWe have developed an algorithm that quantifies the quality of temporal biological signal rather than whether the signal illustrates a significant change over the experimental time course. Because the use of these temporal signals, whether it is in mathematical modeling or clustering, focuses upon the entire time series, it is necessary to develop a method to quantify and select for signals which conform to this ideal. By doing this, we have demonstrated a marked and consistent improvement in the results of a clustering exercise over multiple experiments, microarray platforms, and experimental designs.

Highlights

  • One of the challenges with modeling the temporal progression of biological signals is dealing with the effect of noise and the limited number of replicates at each time point

  • For all of the datasets, the p-value cutoff was selected at p < .05 for both the EDGE as well as the Leave One Out Cross Validation (LOOCV) Quality Assessment

  • While it is arguable as to whether such a threshold is appropriate given the number of genes present within the dataset[12], what we seek to show is that for a given threshold that filtering genes based upon the accuracy as well as differential expression exhibits a stronger link between co-expression and co-regulation than merely selecting the genes based upon their differential expression via algorithms such as EDGE

Read more

Summary

Introduction

One of the challenges with modeling the temporal progression of biological signals is dealing with the effect of noise and the limited number of replicates at each time point. An example of a dynamic biological signal which is of interest researchers are the changes in mRNA gene expression level over time in response to external perturbations such as gene silencing, induction of disease states, or the administration of a drug/toxin[4,5]. The study of this specific signal has evolved from determining which systems show statistically significant changes, to modeling the progression of this change to obtain intuitions about the underlying mechanisms. An example of this would be the use of temporal gene expression profiles to probe the underlying mechanism which governs the PK/PD response of an organism to a drug, or the dynamic response of an organism in response to a severe injury[6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.