Abstract

Abstract. The preparation of laser scanning missions is important for efficiency and data quality. Furthermore, it is a prerequisite for automated data acquisition, which has numerous applications in the built environment, including autonomous inspections and monitoring of construction progress and quality criteria. The scene and potential scanning locations can be discretized to facilitate the analysis of visibility and quality aspects. The remaining mathematical problem to generate an economic scan strategy is the Viewpoint Planning Problem (VPP), which asks for a minimum number of scanning locations within the given scene to cover the scene under pre-defined requirements. Solutions for this problem are most commonly found using heuristics. While these efficient methods scale well, they cannot generally return globally optimal solutions. This paper investigates the VPP based on a problem description that considers quality-constrained visibility in 3D scenes and suitable overlaps between individual viewpoints for targetless registration of acquired point clouds. The methodology includes the introduction of a preprocessing method designed to simplify the input data without losing information about the problem. The paper details various solution methods for the VPP, encompassing conventional heuristics and a mixed-integer linear programming formulation, which is solved using Benders decomposition. Experiments are carried out on two case study datasets, varying in specifications and sizes, to evaluate these methods. The results show the actual quality of the obtained solutions and their deviation from optimality (in terms of the estimated optimality gap) for instances where exact solutions can not be achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.