Abstract

Assessment of the evolutionary process is crucial for understanding the effect of protein structure and function on sequence evolution and for many other analyses in molecular evolution. Here, we used simulations to study how taxon sampling affects accuracy of parameter estimation and topological inference in the absence of branch length asymmetry. With maximum-likelihood analysis, we find that adding taxa dramatically improves both support for the evolutionary model and accurate assessment of its parameters when compared with increasing the sequence length. Using a method we call "doppelgänger trees," we distinguish the contributions of two sources of improved topological inference: greater knowledge about internal nodes and greater knowledge of site-specific rate parameters. Surprisingly, highly significant support for the correct general model does not lead directly to improved topological inference. Instead, substantial improvement occurs only with accurate assessment of the evolutionary process at individual sites. Although these results are based on a simplified model of the evolutionary process, they indicate that in general, assuming processes are not independent and identically distributed among sites, more extensive sampling of taxonomic biodiversity will greatly improve analytical results in many current sequence data sets with moderate sequence lengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.