Abstract

The active space of a signal is an important concept in acoustic communication as it has implications for the function and evolution of acoustic signals. However, it remains mostly unknown for fish as it has been measured in only a restricted number of species. We combined physiological and sound propagation approaches to estimate the communication range of the Lusitanian toadfish's ( ITALIC! Halobatrachus didactylus) advertisement sound, the boatwhistle (BW). We recorded BWs at different distances from vocalizing fish in a natural nesting site at ca. 2-3 m depth. We measured the representation of these increasingly attenuated BWs in the auditory pathway through the auditory evoked potential (AEP) technique. These measurements point to a communication range of between 6 and 13 m, depending on the spectral characteristics of the BW. A similar communication range (ca. 8 m) was derived from comparing sound attenuation at selected frequencies with auditory sensitivity. This is one of the few studies to combine auditory measurements with sound propagation to estimate the active space of acoustic signals in fish. We emphasize the need in future studies for estimates of active space to take informational masking into account.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call