Abstract
The purpose of this study was to link toxicokinetics/toxicodynamics and subcellular partitioning for assessing the susceptibility and the growth inhibition risks of abalone Haliotis diversicolor supertexta exposed to waterborne and foodborne cadmium (Cd) and silver (Ag). We reanalyzed published data on growth inhibition and subcellular partitioning associated with the present mechanistic model to explore the correlations among elimination (k (e)), detoxification (k (d)), and recovery (k (r)) rate constants and to assess the growth inhibition risk. We found a positive correlation among k (e), k (d), and k (r) in abalone exposed to Ag. We also employed a life-stage based probabilistic assessment model to estimate the growth inhibition risk of abalone to environmentally relevant Cd (5-995μgl(-1)) and Ag (0.05-9.95μgl(-1)) concentrations in Taiwan. The results showed that abalone had a minimum 20% probability of the growth inhibition risk exposed to Cd, whereas Ag exposure was not likely to pose the risk. The maximum biomasses were estimated to be 0.0039 and 0.0038, 61.61 and 43.87, and 98.88 and 62.97g for larvae, juveniles, and adults of abalone exposed to the same levels of Cd and Ag, respectively. Our study provides a useful tool to detect potential growth biomass of abalone populations subjected to Cd and Ag stresses and mechanistic implications for a long-term ecotoxicological risk assessment in realistic situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.