Abstract

An accurate estimation of the Thermospheric Neutral Density (TND) is important for predicting the orbit of satellites and objects, for example, those with the altitude of less than 1000 km. Models are often used to simulate TNDs but their accuracy is limited due to uncertainties. Satellite missions such as CHAMP, GRACE, GOCE, Swarm, and GRACE-FO or the Satellite Laser Ranging (SLR) missions can be used to estimate along-track TNDs. However, spatial and temporal coverage of these space borne TNDs is restricted to the mission design. To make the best use of the modelling tools and measurements, we applied these along-track TND measurements within the sequential Calibration and Data Assimilation (C/DA) framework proposed by (Forootan et al., 2022, doi:10.1038/s41598-022-05952-y). The C/DA is used to re-calibrate the NRLMSISE00 model, which is called “C/DA-NRLMSISE00”, whose outputs fit well to the introduced space-borne TNDs. The C/DA-NRLMSISE00 is applicable for forecasting TNDs and individual neutral mass compositions at any predefined vertical level (between ~100 and ~600 km) with user-defined spatial-temporal sampling. Seven periods (between 2003 - 2020) with considerable geomagnetic activity are selected for our investigations because most of the available models lack accuracy to provide reasonable TND simulations. Independent comparisons are performed with the space-borne TNDs that were not used within the C/DA framework, as well as with the outputs of other thermospheric models such as Jacchia-Bowman 2008 (JB2008) and the High Accuracy Satellite Drag Model (HASDM) database. The numerical results indicate that indeed the new model is suitable for producing multi-level global thermospheric neutral density fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call