Abstract

The pattern graph framework solves a wide range of missing data problems with nonignorable mechanisms. However, it faces two challenges of assessability and interpretability, particularly important in safety-critical problems such as clinical diagnosis: (i) How can one assess the validity of the framework's apriori assumption and make necessary adjustments to accommodate known information about the problem? (ii) How can one interpret the process of exponential tilting used for sensitivity analysis in the pattern graph framework and choose the tilt perturbations based on meaningful real-world quantities? In this paper, we introduce Informed Sensitivity Analysis, an extension of the pattern graph framework that enables us to incorporate substantive knowledge about the missingness mechanism into the pattern graph framework. Our extension allows us to examine the validity of assumptions underlying pattern graphs and interpret sensitivity analysis results in terms of realistic problem characteristics. We apply our method to a prevalent nonignorable missing data scenario in clinical research. We validate and compare our method'sresults of our method with a number of widely-used missing data methods, including Unweighted CCA, KNN Imputer, MICE, and MissForest. The validation is done using both boot-strapped simulated experiments as well as real-world clinical observations in the MIMIC-III public dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call