Abstract
Oxidative stress of aquatic microorganisms under heavy metal stress is closely reflected by metabolite changes in cells but it is very difficult to study due to the fast metabolism process and severe in-situ measurements hurdle. Herein, the oxidative stress of cadmium on Euglena gracilis was systematically studied through multi-combined techniques. In particular, for the first time electrochemical approach was associated with Raman spectroscopy imaging to vividly to investigate temporal-spatially varied oxidative stress and its effects on cells metabolism, in which former real-time measured a volcanic relation of extracellular hydrogen peroxide versus the increase of cadmium stress, while the latter shows the corresponding metabolic changes by Raman imaging of single cells. This work builds a bridge to unravel the mechanism of cellular oxidative stress under harsh conditions in a more systematic and holistic approach, while holding a great promise to construct heavy metal biosensors precisely monitoring high heavy metal tolerance strains for environmental modification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.