Abstract

The creation of a bone substitute with both excellent mechanical strength and bioactivity is still a challenge in bone tissue engineering biomaterials. To this end, inspired by the microstructure of nacre, multilayered graphene oxide/chitosan/calcium silicate (GO/CTS/CS) biomaterials were successfully prepared via a bottom-up assembly approach. The GO/CTS/CS biomaterials emulated the “brick and mortar” layered microstructure via chemical assembly and the multilayered helical cylinder macrostructure. In addition, benefiting from the interface interactions in the layered microstructure as well as the multilayered helical cylinder macrostructure, the GO/CTS/CS biomaterials possessed high flexural strength (137.2 MPa), compressive strength (80.2 MPa), toughness (1.46 MJ/m3), and specific strength (124.7 MPa Mg–1 m–3), which are close to those of cortical bone. Furthermore, because of the bioactive chemical components of GO and CS, the multilayered GO/CTS/CS biomaterials significantly improved osteogenesis and...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call