Abstract

Mechanochemistry enables transformations of highly insoluble materials such as uranium dioxide or the mineral studtite [(UO2)(O2)(H2O)2]·(H2O)2 into uranyl triperoxide compounds that can subsequently assemble into hydroxide-bridged uranyl peroxide dimers in the presence of lithium hydroxide. Dissolution of these solids in water yields uranyl peroxide nanoclusters including U24, Li24[(UO2)(O2)(OH)]24. Insoluble uranium solids can transform into highly soluble uranyl peroxide phases in the solid state with miniscule quantities of water. Such reactions are potentially applicable to uranium processing in the front and back end of the nuclear fuel cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.