Abstract

Many fluorophores, such as indocyanine green (ICG), have poor photostability and low photothermal efficiency hindering their wide application in photoacoustic (PA) tomography. In the present study, a supramolecular assembly approach was used to develop the hybrid nanoparticles (Hy NPs) of ICG and porous silicon (PSi) as a novel contrast agent for PA tomography. ICG was assembled on the PSi NPs to form J-aggregates within 30 min. The Hy NPs presented a red-shifted absorption, improved photothermal stability, and enhanced PA performance. Furthermore, 1-dodecene (DOC) was assembled into the NPs as a ‘nanospacer’, which enhanced non-radiative decay for increased thermal release. Compared to the Hy NPs, adding DOC into the Hy NPs (DOC-Hy) increased the PA signal by 83%. Finally, the DOC-Hy was detectable in PA tomography at 1.5 cm depth in tissue phantom even though its concentration was as low as 6.25 µg/mL, indicating the potential for deep tissue PA imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.