Abstract

With the principles of crystal engineering, three novel metal(II) complexes, [Cu2(betd)(phen)4].15H2O (1), [Cd4(betd)2(phen)8]⋅28H2O (2) and {[Co2(betd)(phen)2(H2O)2]·2H2O}n (3) (H4betd=bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic acid, phen=1,10-phenanthroline) were synthesized and structurally characterized by elemental analyses, IR spectroscopy, single-crystal X-ray diffraction analyses, TGA, powder XRD and fluorescent measurements. Complex 1 is a binuclear structure, novel water tapes are observed to be encapsulated in the 3D open supramolecular architecture by hydrogen bond interactions. In 2, two pairs of CdII ions joined with two (betd)4− ions to form a cyclic tetranuclear structure. The neighboring tetranuclear units are linked into 2D network through π⋯π stacking interactions. Interestingly, the lattice H2O molecules are joined by strong hydrogen bond interactions generating a wavy water layer, which contacts the 2D network to form 3D supramolecular structure. 3 shows a 2D (4,4) grid network, which are assembled in an ABAB sequence to 3D supramolecular structures via π⋯π stacking interactions between two central phen ligands from two adjacent sheets and hydrogen bond interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.