Abstract

Assembling graphene oxide nanoribbons (GONRs) into three-dimensional (3D) materials with controllable and desired structure is an effective way to expand their structural features and enable their practical applications. In this work, an ultralight 3D porous amidoxime functionalized graphene oxide nanoribbons aerogel (PAO/GONRs-A) was prepared via solvothermal polymerization method using acrylonitrile as monomer and GONRs as solid matrices for selective separation of uranium(VI) from water samples. The PAO/GONRs-A possessed a high nitrogen content (13.5%), low density (8.5 mg cm−3), and large specific surface area (494.9 m2 g−1), and presented an excellent high adsorption capacity of uranium, with a maximum capacity of 2.475 mmol g−1 at a pH of 4.5, and maximum uranium-selectivity of 65.23% at a pH of 3.0. The results of adsorption experiments showed that U(VI) adsorption on PAO/GONRs-A was a pH-dependent, spontaneous and endothermic process, which was better fitted to the pseudo-second-order kinetic model and Langmuir isotherm model. Both X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations revealed that U(VI) adsorption on PAO/GONRs-A mainly did rely on the amidoxime groups anchored on the aerogel while UO2(PAO)2(H2O)3 was dominant after interaction of uranyl with PAO/GONRs-A. Therefore, as a candidate adsorbent, PAO/GONRs-A has a high potential for the removal of uranium from aqueous solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call