Abstract

A series of highly energetic organic salts comprising a tetrazolylfuroxan anion, explosophoric azido or azo functionalities, and nitrogen-rich cations were synthesized by simple, efficient, and scalable chemical routes. These energetic materials were fully characterized by IR and multinuclear NMR (1 H, 13 C, 14 N, 15 N) spectroscopy, elemental analysis, and differential scanning calorimetry (DSC). Additionally, the structure of an energetic salt consisting of an azidotetrazolylfuroxan anion and a 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazolium cation was confirmed by single-crystal X-ray diffraction. The synthesized compounds exhibit good experimental densities (1.57-1.71 g cm-3 ), very high enthalpies of formation (818-1363 kJ mol-1 ), and, as a result, excellent detonation performance (detonation velocities 7.54-8.26 kms-1 and detonation pressures 23.4-29.3 GPa). Most of the synthesized energetic salts have moderate sensitivity toward impact and friction, which makes them promising candidates for a variety of energetic applications. At the same time, three compounds have impact sensitivity on the primary explosives level (1.5-2.7 J). These results along with high detonation parameters and high nitrogen contents (66.0-70.2 %) indicate that these three compounds may serve as potential environmentally friendly alternatives to lead-based primary explosives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call