Abstract
Supramolecular hydrogels offer a noncovalent binding platform that preserves the bioactivity of structural molecules while enhancing their stability, particularly in the context of diabetic wound repair. In this study, we developed protein-peptide-based supramolecular hydrogels by assembling β-sheet fibrillizing peptides (designated Q11) with β-tail fused recombinant proteins. The Q11 peptides have the ability to drive the gradated assembly of N- or C-terminal β-sheet structure (β-tail) fused recombinant proteins. We first investigated the assembly properties of Q11 and assessed its stability under varying pH and temperature conditions by combining Q11 with two β-tail fused fluorescent proteins. The results showed that Q11 enhanced the tolerance of the fluorescent proteins to changes in pH and temperature. Building upon these findings, we designed collagen-like proteins and Sonic Hedgehog-fused recombinant proteins (CLP-Shh) that could be assembled with Q11 to form peptide-protein supramolecular hydrogels. These hydrogels demonstrated the ability to improve cell viability and migration and upregulate key markers of cell growth. Further in vivo studies revealed that the Q11-driven supramolecular hydrogel effectively enhances diabetic wound healing and epidermal regeneration by promoting the expression of epidermal-related proteins and immune factors. This study highlights the potential of supramolecular hydrogels for clinical applications and their promise in the development of biofunctional hydrogels for therapeutic use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.