Abstract
ABSTRACT In addition to functional nuclear pore complexes engaged in nucleo-cytoplasmic transport, the cytoplasmic stacks of pore complexes, called annulate lamellae, exist in numerous cell types. Although both annulate lamellae and nuclear pore complexes are present in fertilized mammalian oocytes, their relative roles in the process of fertilization and preimplantation development are not known. Using epifluorescence and electron microscopy, we explored their fate during bovine fertilization. The assembly of annulate lamellae in bovine oocytes was triggered by sperm-oocyte binding and continued concomitantly with the incorporation of the nuclear pores in the nuclear envelopes of the developing male and female pronuclei. This process was also induced by the parthenogenetic activation of metaphase-II-arrested oocytes. Depletion of Ca2+, previously implicated in oocyte activation and in the insertion of pore complexes into the nuclear envelope, prevented the formation of nuclear pore complexes, but not the assembly of annulate lamellae in oocyte cytoplasm. Injection of the nuclear pore antagonist, wheat germ agglutinin, into the cytoplasm of mature oocytes that were subsequently fertilized caused the arrest of pronuclear development, indicating the requirement of nuclear pore complexes for normal pronuclear development. Treatment of the fertilized oocytes with the microtubule inhibitor, nocodazole, prevented gathering of annulate lamellae around the developing pronuclei, insertion of nuclear pores into their nuclear envelopes, and further pronuclear development. The formation of the male pronuclei was reconstituted in Xenopus egg extracts and reflected the behavior of nuclear pores during natural fertilization. These data suggest that nuclear pore complexes are required for normal pronuclear development from its beginning up until pronuclear apposition. Annulate lamellae may be involved in the turnover of nuclear pore complexes during fertilization, which is in turn facilitated by the reorganization of oocyte microtubules and influx of Ca2+ into oocyte cytoplasm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.