Abstract

Methyl coenzyme M reductase (MCR) is a complex enzyme that catalyzes the final step in biological methanogenesis. To better understand its assembly, the recombinant MCR from the thermophile Methanothermococcus okinawensis (rMCRok) was expressed in the mesophile Methanococcus maripaludis The rMCRok was posttranslationally modified correctly and contained McrD and the unique nickel tetrapyrrole coenzyme F430 Subunits of the native M. maripaludis (MCRmar) were largely absent, suggesting that the recombinant enzyme was formed by an assembly of cotranscribed subunits. Strong support for this hypothesis was obtained by expressing a chimeric operon comprising the His-tagged mcrA from M. maripaludis and the mcrBDCG from M. okinawensis in M. maripaludis The His-tagged purified rMCR then contained the M. maripaludis McrA and the M. okinawensis McrBDG. The present study prompted us to form a working model for MCR assembly, which can be further tested by the heterologous expression system established here.IMPORTANCE Approximately 1.6% of the net primary production of plants, algae, and cyanobacteria are processed by biological methane production in anoxic environments. This accounts for about 74% of the total global methane production, up to 25% of which is consumed by anaerobic oxidation of methane (AOM). Methyl coenzyme M reductase (MCR) is the key enzyme in both methanogenesis and AOM. MCR is assembled as a dimer of two heterotrimers, where posttranslational modifications and F430 cofactors are embedded in the active sites. However, this complex assembly process remains unknown. Here, we established a heterologous expression system for MCR to learn how MCR is assembled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.