Abstract

A critical review of studies on import of Lhcb (apoproteins of LHC II) by chloroplasts uncovered a mechanism for initiation of assembly of light-harvesting complexes. Manipulation of in vivo systems and mutagenesis of specific residues in the protein showed that accumulation of physiological amounts of Lhcb by the plastid requires interaction of the protein with Chl within the inner membrane of the chloroplast envelope. ‘Retention motifs’, commonly -EXXHXR- in the first membrane-spanning region (helix-1) and -EXXNXR- in the third membrane-spanning region (helix-3), occur in the primary sequence of the protein. Mutations in these sequences prevent accumulation of Lhcb by isolated chloroplasts. We propose that the His or Asn sidechain and a transient intrahelix ion-pair with the Glu and Arg residues provide ligands for two molecules of Chl in each motif, which serve as a sensing mechanism for the availability of Chl. Interaction of two Chl molecules with both motifs is required for stable insertion of the protein into the membrane. Chl(ide) is possibly quenched by interaction with xanthophylls immediately after synthesis, and Chl-lutein pairs may initiate folding of Lhcb. Lhcb that does not immediately interact with sufficient Chl molecules is not retained by the organelle and, in vivo, is retracted into the cytosol or shunted to vacuoles for degradation rather than imported into the plastid stroma. The ubiquitous existence of retention motifs from small Lhcb-like polypeptides in cyanobacteria to all nuclear-encoded Chl-binding proteins (the Lhcb and Lhca families and related proteins) testify to the importance of these sequences in assembly of Chl-protein complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call