Abstract

This paper reports on the strong tendency of a group of thioether and selenoether molecules to adopt non-centrosymmetric and non-interpenetrating features in forming 3D coordination networks with metal ions. We illustrate such tendency with the (10, 3)-a nets formed by Ag(I) ions and the large aromatic ligands of 1,3,6,8-tetrakis(phenylseleno)pyrene (TPhSeP) and 2,3,6,7,10,11-hexakis(phenylseleno)triphenylene (HPhSeT). In particular, TPhSeP interacts with AgSbF6 to provide a 3D chiral network based on trimeric coordination building blocks. Each trimeric building block is rather complex and consists of three pairs of TPhSeP molecules integrated through the Ag+ ions into a circular unit. The circular, trimeric units function as the three-connected nodes, which are further connected through the Ag+ ions to generate the (10, 3)-a topology. By comparison, the connectivity of the HPhSeT-based net is simpler, with the trigonal-shaped HPhSeT molecules acting as three-connected nodes that are integrated into a (10...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.