Abstract

ABSTRACTCarbon nanotubes (CNTs) have been proposed as electrical interconnects, due to their excellent properties. However, the current nanotube growth techniques suffer from several drawbacks. One of the main challenges for applying CNTs to the circuitry is the high growth temperature (>600°C). Such temperatures are incompatible with microelectronic processes. The other issue is the poor adhesion between CNTs and the substrates, which will result in long term reliability issues and high contact resistance. To overcome these disadvantages, we have successfully demonstrated a methodology that we term “CNT transfer technology”. The distinctive CNT-transfer-technology features are separation of CNT growth and CNT device assembly at solder reflow temperature. In this paper, we combined our expertise in growth of well-aligned open-ended CNT bundles with the CNT transfer process to assemble CNT bundles for fine-pitch interconnects applications. To demonstrate the feasibility of transfer process to assemble the fine-pitch CNT bundles, the CNT bundles with diameter, aspect-ratio and pitch of 25 μm, 4, and 80 μm, respectively, were assembled on the copper substrates. The measured resistivity of the long CNTs is ∼2.3×10−4 Ω-cm. The CNT-solder alloy interfaces were observed by the SEM. The results indicated that molten SnPb solder form strong mechanical bonding with open-ended CNTs, suggesting the superior CNT/solder interfacial properties by solder reflow process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call