Abstract

Hazardous heavy metals and organic substances removal is of great significance for ensuring the safety of aquatic-ecosystem, yet the highly effective and selective extraction always remains challenging. To address this problem, magnetic hollow microcubes were fabricated through thermal carbonization of Fe3O4-COOH@ γ-CD-MOFs, and core-shell structured precursors were in-situ greenly constructed on a large scale via microwave-assisted self-assembly strategy. As noted, the development of secondary crystallization was utilized to achieve uniform dispersion of cores within MOFs frameworks and thus improved magnetic and adsorption ability of composites. Acquired magnetic Fe3O4 @HC not only can harvest excellent extraction of heavy metals (Cd, Pb, and Cu of 129.87, 151.05, and 106.98 mg·g−1) but also exhibit highly selective adsorption ability for cationic organics (separation efficiency higher than 95.0 %). Impressively, Fe3O4 @HC achieved outstanding adsorption (60–80 %) of Cd in realistic mussel cooking broth with no obvious loss in amino acid. Characterizations better offer mechanistic insight into the enhanced selectivity of positively charged pollutants can be attributed to synergistic effect of ions exchange and electrostatic interaction of abundant oxygen-containing functional groups. Our study provides a feasible route by rationally developing core-shell structured composites to promote the practical applications of sustainable water treatment and value-added utilization of processing by-products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.