Abstract

Atomic force microscopy (AFM) is an imaging technique that enables single molecule characterization of biological systems at nanometer resolution. Imaging in ambient conditions can provide details of the conformational states and interactions of a population of molecules which is well complemented by single-molecule imaging of the systems dynamics using time-lapse AFM imaging, in which images are capture at rates of 10-15 frames per second in an aqueous buffer. Here we describe the assembly and preparation of nucleosomes containing centromere protein A (CENP-A) for AFM imaging in both static and time-lapse modes. The AFM imaging and data analysis techniques described enable characterization of the extent of DNA wrapping around the histone core and time-resolved visualization of the systems intrinsic dynamic behaviors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.