Abstract

Celastrol (Cel), a compound derived from traditional Chinese medicine Tripterygium wilfordii Hook. F, has attracted considerable attention as an anticancer drug. However, its clinical application is limited due to its low bioavailability and potential toxicity. With the advancement of nanoscale metal organic frameworks (MOF), the nano-delivery of drugs can effectively improve those disadvantages. Nevertheless, hydrophobic drugs apparently cannot be encapsulated by the hydrophilic channels of MOF-based drug delivery systems. To address these issues, a new assembly strategy for hydrophobic Cel was developed by coordinating the deprotonated Cel to zeolitic imidazolate framework-8 (ZIF-8) with the assistance of triethylamine (Cel-ZIF-8). This strategy greatly elevates the assembly efficiency of Cel from less than 1% to ca. 80%. The resulted Cel-ZIF-8 remains stable in the physiological condition while dissociating and releasing Cel after a 45-minute incubation in an acidic tumor microenvironment (pH 5.5). Furthermore, Cel-ZIF-8 is proved to be easily taken up by cancer cells and exhibits a better therapeutic effect on tumor cells than free Cel. Overall, the Cel-ZIF-8 provides a novel assembly strategy for hydrophobic drugs, and the findings are envisaged to facilitate the application of Cel in cancer therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call