Abstract

Previous studies have shown that treatment of mammalian cells with phospholipase A 2 (PLA 2) antagonists cause the normally interconnected Golgi ribbon to break up into large fragments of stacked Golgi cisternae (“mini-stacks”) that remain located in the juxtanuclear region. Using the reversible PLA 2 antagonist, ONO-RS-082 (ONO) and live-cell, time-lapse microscopy to image the Golgi reassembly process, we found that Golgi mini-stacks underwent a burst of membrane tubule formation following washout of ONO: before washout only 4.3 ± 3.8 tubules/cell/10 min were formed, whereas after washout 29.9 ± 11.9 tubules/cell/10 min formed. These membranes tubules formed bridges between physically separate mini-stacks, thus mediating their coalescence into intact Golgi ribbons. Formation of inter-stack tubules and an intact Golgi ribbon was also facilitated by microtubules because treatment with nocodazole significantly inhibited both processes. This microtubule-dependent process was also dependent on dynein because the dynein inhibitor nordihydroguaiaretic acid (NDGA) inhibited reassembly. These studies show that a late stage of Golgi assembly occurs via membrane tubules, whose formation is dependent on PLA 2 activity and microtubules. Considering these results together, we concluded that the maintenance and assembly of normal Golgi architecture is dependent on the PLA 2-mediated, dynamic formation of inter-Golgi membrane tubules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.