Abstract
We present a strategy to stabilize artificial protein hydrogels through covalent bond formation following physical association of terminal leucine zipper domains. Artificial proteins consisting of two terminal leucine zipper domains and a random coil central domain form transient networks above a certain concentration, but the networks dissolve when placed in excess buffer. Engineering of a cysteine residue into each leucine zipper domain allows formation of disulfide bonds templated by leucine zipper aggregation. Circular dichroism spectra show that the zipper domains remain helical after cysteine residues and disulfide bonds are introduced. Asymmetric placement of the cysteine residues in the leucine zipper domains suppresses intramolecular disulfide bonds and creates linked “multichains” composed of ca. 9 protein chains on average, as determined by multiangle light scattering measurements. These “multichains” act as the building units of the physical network formed by leucine zipper aggregation. The in...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.