Abstract
The feasibility of creating new enzyme activities from enzymes of known function has precedence in view of protein evolution based on the concepts of molecular recruitment and exon shuffling. The enzymes encoded by the Escherichia coli genes purU and purN, N10-formyltetrahydrofolate hydrolase and glycinamide ribonucleotide (GAR) transformylase, respectively, catalyze similiar yet distinct reactions. N10-formyltetrahydrofolate hydrolase uses water to cleave N10-formyltetrahydrofolate into tetrahydrofolate and formate, whereas GAR transformylase catalyses the transfer of formyl from N10-formyltetrahydrofolate to GAR to yield formyl-GAR and tetrahydrofolate. The two enzymes show significant homology (approximately 60%) in the carboxyl-terminal region which, from the GAR transformylase crystal structure and labeling studies, is known to be the site of N10-formyltetrahydrofolate binding. Hybrid proteins were created by joining varying length segments of the N-terminal region of the PurN gene (GAR binding region) and the C-terminal (N10-formyltetrahydrofolate binding) region of PurU. Active PurN/PurU hybrids were then selected for by their ability to complement an auxotrophic E. coli strain. Hybrids able to complement the auxotrophs were purified to homogeneity and assayed for activity. The specific activity of two hybrid proteins was within 100- to 1000-fold of the native purN GAR transformylase validating the approach of constructing an enzyme active site from functional parts of others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.