Abstract

Porous structures based on multi-metallic motifs are receiving growing interest, but their general preparation still remains a challenge. Here, we report the self-assembly and structure of a CuII metal-organic cage (MOC) that is functionalized with free bis(pyrazolyl)methane sites. The homometallic Cu4L4 cage is isolated as a water-stable crystalline solid, and its formation is dependent on metal-ligand stoichiometry and the pre-organization of the Cu2 paddlewheel. We show by X-ray diffraction and SEM-EDX that PdII chloride can be quantitatively inserted into the free chelating sites of the MOC to yield a [Cu4(L(PdCl2))4] structure. Moreover, the solvent employed in the metalation dictates the solid-state isomerism of the heterometallic cage─a further handle to control the MOC's structural diversity and permanent porosity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call