Abstract
Molecular chaperones have an essential role for the maintenance of a balanced protein homeostasis. Here, we investigate how protein kinases are recruited and loaded to the Hsp90-Cdc37 complex, the first step during Hsp90-mediated chaperoning that leads to enhanced client kinase stability and activation. We show that conformational dynamics of all partners is a critical feature of the underlying loading mechanism. The kinome co-chaperone Cdc37 exists primarily in a dynamic extended conformation but samples a low-populated, well-defined compact structure. Exchange between these two states is maintained in an assembled Hsp90-Cdc37 complex and is necessary for substrate loading. Breathing motions at the N-lobe of a free kinase domain partially expose the kinase segment trapped in the Hsp90 dimer downstream in the cycle. Thus, client dynamics poise for chaperone dependence. Hsp90 is not directly involved during loading, and Cdc37 is assigned the task of sensing clients by stabilizing the preexisting partially unfolded client state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.