Abstract

We use a hybrid approach which executes ant colony algorithm in combination with beam search (ACO-BS) to solve the Simple Assembly Line Balancing Problem (SALBP). The objective is to minimise the number of workstations for a given fixed cycle time, in order to improve the solution quality and speed up the searching process. The results of 269 benchmark instances show that 95.54% of the problems can reach their optimal solutions within 360 CPU time seconds. In addition, we choose order strength and time variability as indicators to measure the complexity of the SALBP instances and then generate 27 instances with a total of 400 tasks (the problem size being much larger than that of the largest benchmark instance) randomly, with the order strength at 0.2, 0.6 and 0.9 three levels and the time variability at 5-15, 65-75, and 135-145 levels. However, the processing times are generated following a unimodal or a bimodal distribution. The comparison results with solutions obtained by priority rule show that ACO-BS makes significant improvements on the quality of the best solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.