Abstract

The intrinsic high diffusion rate of colloids at low Péclet number results in an extremely fast crystallization process and instant formation of colloidal crystals, even at an ultracentrifugal field of extremely high intensity. By introducing a small number of clusters in sedimention, it should be possible to slow down the crystallization process, thus making the assembly order tunable in preparative ultracentrifugation experiments. Here, we used sodium dodecyl sulfate-stabilized polystyrene nanoparticles (with a size dispersity of 1.07) dispersed in a solution of high ionic strength. Sedimentation and assembly of these nanoparticles were done using preparative ultracentrifugation at various angular velocities. The sedimentation process was also analyzed in situ by analytical ultracentrifugation in real time. By creating as low as 3% of clusters into these nearly uniformly sized polystyrene nanoparticle dispersions during the sedimentation process, the superstructure order becomes easily tunable between glassy and crystalline. Theoretical calculations complemented the experiments to explain the mechanism of cluster formation in sedimentation. This work provides a novel methodology to produce superstructures with a tunable packing order for colloids at low Péclet number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.