Abstract

Silver nanoparticles (AgNPs) with controlled size and size distribution were prepared by an in situ chemical reduction route based on a microreactor template composed of poly(acrylamide-co-N-vinylpyrrolidone)/chitosan semi-interpenetrating network hydrogels, P(AAm-co-NVP)/CS semi-IPN, in the presence of sodium hypophosphite. The characterization of structures and morphologies of the as-fabricated P(AAm-co-NVP)/CS–Ag nanocomposite hydrogels was conducted on a Fourier transformation infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), and UV–vis spectrometer. The effect of various component proportions of the reactants on formation of AgNPs and swelling of the resulting P(AAm-co-NVP)/CS–Ag nanocomposite hydrogels was investigated. The experimental results indicated that the Ag grains were uniformly dispersed within P(AAm-co-NVP)/CS hydrogel networks in a spherical shape, and were stabilized by the semi-IPN structure and a complexation and/or electrostatic interaction between Ag+ cations and chemical functional groups, such as –OH, –CONH2, –NH2 or –C=O based on the semi-IPN structure reactor templates. The size of the majority of AgNPs ranges from 12 to 25 nm, depending on the three-network templates, the presence of functional groups as well as feed ratios of N-vinylpyrrolidone, acrylamide, and chitosan. Thermogravimetric analysis (TGA) provides the stability of the resulting nanocomposite hydrogels. The nanocomposite hydrogels demonstrate reduced swelling in comparison with the P(AAm-co-NVP)/CS ones. The kinetics modeling confirms that transport mechanism of the samples follows anomalous diffusion mode, and the kinetic parameters vary with the component ratios, and the maximal theoretical water volume S ∞ is well in agreement with the experimental values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call