Abstract
Thin films based on dodecylamine stabilized gold nanoparticles interlinked with different organic molecules are prepared by automatic layer-by-layer self-assembly in a microfluidic quartz crystal microbalance (QCM) cell, to obtain an in situ insight on the film formation by ligand/linker exchange reactions. The influence of interlinking functional groups and the length of the organic linker molecule on the assembly behavior is investigated. Alkyldithiols with different lengths are compared to alkyldiamines and alkylbisdithiocarbamates with a C8 alkylic molecular backbone. The stepwise layer-by-layer assembly occurs independently of the linker molecule, while the largest frequency changes always correspond to the gold nanoparticle step. During the solvent rinsing and ligand/linker exchange reaction step, the frequency is almost constant with slight increases or decreases dependent on the molar mass of the linker compared to the exchanged ligand. The assembly efficiency is higher for shorter molecules and for molecules with stronger interacting functional groups. The densities of the composite films are calculated from QCM data and independent thickness measurements. They reflect the higher fraction of organic material in the films comprising longer organic linkers. The plasmon resonance band of the gold nanoparticles in the final assemblies is measured with UV/vis spectroscopy. Band positions in films prepared from dithiols and diamines of comparable lengths are very similar, while the spectrum of the bisdithiocarbamate film exhibits a distinct blue-shift. This observation is explained by the longer molecular structure of the linker due to a larger binding group, in conjunction with a delocalization of particle charge on the organic molecule. Obtained results play an essential role in the understanding of thin film layer-by-layer self-assembly processes, and enable the formation of new gold nanoparticle networks with organic diamine and bisdithiocarbamate molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.