Abstract
HypothesisModification of polyallylamine hydrochloride (PAH) with heterobifunctional low molecular weight polyethylene glycol (PEG) (600 and 1395 Da), and subsequent attachment of mannose, glucose, or lactose sugars to PEG, can lead to formation of polyamine phosphate nanoparticles (PANs) with lectin binding affinity and narrow size distribution. ExperimentsSize, polydispersity, and internal structure of glycosylated PEGylated PANs were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and small angle X-ray scattering (SAXS). Fluorescence correlation spectroscopy (FCS) was used to study the association of labelled glycol-PEGylated PANs. The number of polymer chains forming the nanoparticles was determined from the changes in amplitude of the cross-correlation function of the polymers after formation of the nanoparticles. SAXS and fluorescence cross-correlation spectroscopy were used to investigate the interaction of PANs with lectins: concanavalin A with mannose modified PANs, and jacalin with lactose modified ones. FindingsGlyco-PEGylated PANs are highly monodispersed, with diameters of a few tens of nanometers and low charge, and a structure corresponding to spheres with Gaussian chains. FCS shows that the PANs are single chain nanoparticles or formed by two polymer chains. Concanavalin A and jacalin show specific interactions for the glyco-PEGylated PANs with higher affinity than bovine serum albumin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.