Abstract

On the leaf surfaces of numerous plant species, inclusive of sunflower (Helianthus annuus L.), pink-pigmented, methanol-consuming, phytohormone-secreting prokaryotes of the genus Methylobacterium have been detected. However, neither the roles, nor the exact mode of colonization of these epiphytic microbes have been explored in detail. Using germ-free sunflower seeds, we document that, during the first days of seedling development, methylobacteria exert no promotive effect on organ growth. Since the microbes are evenly distributed over the outer surface of the above-ground phytosphere, we analyzed the behavior of populations taken from two bacterial strains that were cultivated as solid, biofilm-like clones on agar plates in different aqueous environments (Methylobacterium mesophilicum and M. marchantiae, respectively). After transfer into liquid medium, the rod-shaped, immobile methylobacteria assembled a flagellum and developed into planktonic microbes that were motile. During the linear phase of microbial growth in liquid cultures, the percentage of swimming, flagellated bacteria reached a maximum, and thereafter declined. In stationary populations, living, immotile bacteria, and isolated flagella were observed. Hence, methylobacteria that live in a biofilm, transferred into aqueous environments, assemble a flagellum that is lost when cell density has reached a maximum. This swimming motility, which appeared during ontogenetic development within growing microbial populations, may be a means to colonize the moist outer surfaces of leaves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call