Abstract

A series of novel bischelate bridging ligands, CH3NH(CH2)2N(CH3)(CH2)nN(CH3)(CH2)2NHCH3 (n = 9, 10, 11, and 12) were synthesized as hydrochloride salts and characterized by elemental analyses, electrospray mass spectrometry, and 1H and 13C NMR spectroscopy. These ligands form [2]pseudorotaxanes with α-cyclodextrin (α-CD) and the stability constants have been determined from 1H NMR titrations in D2O. The kinetics and mechanism of the assembly and dissociation of a [2]pseudorotaxane in which α-CD has been threaded by the CH3NH2(CH2)2N(CH3)(CH2)12N(CH3)(CH2)2NH2CH32+ ligand were determined in aqueous solution using 1H NMR spectroscopy. A weak inclusion of the dimethylethylenediamine end group precedes the passage of the α-CD onto the hydrophobic dodecamethylene chain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call