Abstract

Ternary complex Langmuir−Blodgett (LB) films containing 1,1‘-dioctadecyl-4,4‘-bipyridinium (SV), deoxyribonucleic acid (DNA), and 5,10,15,20-tetrakis(4-N-methylpyridyl)porphine tetra(p-toluenesulfonate) (TMPyP) were assembled in two ways. One was assembled by depositing the complex monolayer of SV/DNA/TMPyP, which was in situ formed through the adsorption of aqueous subphase containing DNA and TMPyP onto the spreading SV monolayer (type I). Another was obtained by reacting the preformed SV/DNA LB film with TMPyP in aqueous solution (type II). A series of methods, such as surface pressure−area isotherms, atomic force microscopy (AFM), polarized UV−vis spectra, circular dichroism (CD), X-ray diffraction (XRD), and fluorescence lifetime measurements, were used to characterize these ternary LB films. The isotherm measurement indicated that stable complex monolayers could be formed at the air−water interface through the adsorption between SV and DNA or DNA/TMPyP. AFM showed different morphologies of type I and...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.