Abstract

Enzymes play a crucial role in biochemical reactions, but their inherent structural instability limits their performance in industrial processes. In contrast, amyloid structures, known for their exceptional stability, are emerging as promising candidates for synthetic catalysis. This article explores the development of metal-decorated nanozymes formed by short peptides, inspired by prion-like domains. We detail the rational design of synthetic short Tyrosine-rich peptide sequences, focusing on their self-assembly into stable amyloid structures and their metallization with biologically relevant divalent metal cations, such as Cu2+, Ni2+, Co2+ and Zn2+. The provided experimental framework offers a step-by-step guide for researchers interested in exploring the catalytic potential of metal-decorated peptides. By bridging the gap between amyloid structures and catalytic function, these hybrid molecules open new avenues for developing novel metalloenzymes with potential applications in diverse chemical reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.